Boosting with Averaged Weight Vectors

Nikunj C. Oza

Computational Sciences Division
NASA Ames Research Center
Mail Stop 269-3
Moffett Field, CA 94035-1000, USA

oza@email.arc.nasa.gov

Abstract. AdaBoost [5] is a well-known ensemble learning algorithm
that constructs its constituent or base models in sequence. A key step
in AdaBoost is constructing a distribution over the training examples
to create each base model. This distribution, represented as a vector,
is constructed to be orthogonal to the vector of mistakes made by the
previous base model in the sequence [7]. The idea is to make the next
base model’s errors uncorrelated with those of the previous model. Some
researchers have pointed out the intuition that it is probably better to
construct a distribution orthogonal to the mistake vectors of all the pre-
vious base models, but that this is not always possible [7]. We present an
algorithm that attempts to come as close as possible to this goal in an
efficient manner. We present experimental results demonstrating signif-
icant improvement over AdaBoost and the Totally Corrective boosting
algorithm [7], which also attempts to satisfy this goal.

1 Introduction

AdaBoost [5] is one of the most well-known and highest-performing ensemble
classifier learning algorithms [4]. It constructs a sequence of base models, where
each model is constructed based on the performance of the previous model on
the training set. In particular, AdaBoost calls the base model learning algorithm
with a training set weighted by a distribution.! After the base model is created,
it is tested on the training set to see how well it learned. We assume that the
base model learning algorithm is a weak learning algorithm [6]; that is, with
high probability, it produces a model whose probability of misclassifying an
example is less than 0.5 when that example is drawn from the same distribution
that generated the training set. The point is that such a model performs better
than random guessing.? The weights of the correctly classified examples and

! If the base model learning algorithm cannot take a weighted training set as input,
then one can create a sample with replacement from the original training set accord-
ing to the distribution and call the algorithm with that sample.

2 The version of AdaBoost that we use was designed for two-class classification prob-
lems. However, it is often used for a larger number of classes when the base model
learning algorithm is strong enough to have an error less than 0.5 in spite of the
larger number of classes.

misclassified examples are scaled down and up, respectively, so that the two
groups’ total weights are 0.5 each. The next base model is generated by calling
the learning algorithm with this new weight distribution and the training set.
The idea is that, because of the weak learning assumption, at least some of
the previously misclassified examples will be correctly classified by the new base
model. Previously misclassified examples are more likely to be classified correctly
because of their higher weights, which focus more attention on them. Kivinen
and Warmuth [7] have shown that AdaBoost scales the distribution with the goal
of making the next base model’s mistakes uncorrelated with those of the previous
base model. It is well-known that ensembles need to have low correlation in their
base models’ errors in order to perform well [11].

Given this point, we would think, as was pointed out in [7], that AdaBoost
would perform better if the next base model’s mistakes were uncorrelated with
those of all the previous base models instead of just the previous one. It is
not always possible to construct a distribution consistent with this requirement.
However, we can attempt to find a distribution that comes as close as possible
to satisfying this requirement. Kivinen and Warmuth [7] devised the Totally
Corrective algorithm (TCA), which attempts to do this. However, they do not
present any empirical results. Also, they hypothesize that this algorithm will
overfit and; therefore, not perform well. This paper presents a new algorithm,
called AveBoost, which has the same goal as the TCA. In particular, AveBoost
calculates the next base model’s distribution by first calculating a distribution
the same way as in AdaBoost, but then averaging it elementwise with those
calculated for the previous base models. In this way, AveBoost takes all the
previous base models into account in constructing the next model’s distribution.
In Section 2, we review AdaBoost and describe the TCA. In Section 3, we state
the AveBoost algorithm and describe the sense in which our solution is the best
one possible. In Section 4, we present an experimental comparison of AveBoost
with AdaBoost and the TCA. Section 5 summarizes this paper and describes
ongoing and future work.

2 AdaBoost and Totally Corrective Algorithm

Figure 1 shows AdaBoost’s pseudocode. AdaBoost constructs a sequence of base
models hy; for t € {1,2,...,T}, where each one is constructed based on the per-
formance of the previous base model on the training set. In particular, AdaBoost
maintains a distribution over the m training examples. The distribution d; used
in creating the first base model gives equal weight to each example (di,; = 1/m
for all i € {1,2,...,m}). AdaBoost now enters the loop, where the base model
learning algorithm L, is called with the training set and d;.* The returned
model h; is then tested on the training set to see how well it learned. Training
examples misclassified by the current base model have their weights increased

3 As mentioned earlier, if L, cannot take a weighted training set as input, then we can
give it a sample drawn with replacement from the original training set according to
the distribution d induced by the weights.

AdaBoost({(z1,y1);- -, (Tm,ym)}, Ls, T')
Initialize d1; = 1/m for all : € {1,2,...,m}.
Fort=1,2,...,T:
he = Ly({(z1,91), - -, (Tm, ym)}, de).
Calculate the error of h; : €, = Zi:hz(m)#yi di;.
If e, > 1/2 then,
set T'=t— 1 and abort this loop.
Calculate distribution d¢41:

L if ht(.’l:q;) =1y

dip1,i = dg; x § 2{17e) i
1 ti L otherwise.

2et

Output the final hypothesis:
hfin(z) = argmax, ¢y Et:ht(m):y logIZ—:’.

Fig. 1. AdaBoost algorithm: {(z1,y1),...,(Zm,Yym)} is the training set, L; is the base
model learning algorithm, and T is the maximum allowed number of base models.

Totally Corrective AdaBoost({(z1,¥1),---, (Zm,Ym)}, Ls,T)
Initialize d1; = 1/m for all : € {1,2,...,m}.
Fort=1,2,...,T:

hy = Lb({(x1,y1), (RN (xm,ym)}; dt)
Calculate the mistake vector ug:

{1 if ht(.’L‘,) =y

Ut 3 = .
’ —1 otherwise.

If d¢ - ut <0 then,
set T'=t— 1 and abort this loop.
Calculate distribution dg41:
Initialize d; = d;.

For j=1,2,...
q; = argmaX,.c(1,2,...t} |d; - Ug; |-
R 1+d;-ugq,
&;j=In —2 3
l—dj-qu

For all i € {1,2,...,m},
djt1i = 7-dj,iexp(—a;uq i),
where Z; = 3™ czj,iexp(—ézjqu,i).
Output the final hypothesis:
hyin(z) = argmax, cy Zt:ht (z)=y lOQ—I:t .

Fig. 2. Totally Corrective Boosting algorithm: {(z1,y1),..., (®m,ym)} is the training
set, Ly is the base model learning algorithm, and 7 is the maximum allowed number

of base models.

for the purpose of creating the next base model, while correctly-classified train-
ing examples have their weights decreased. More specifically, if h; misclassifies
the ¢th training example, then its new weight dy11; is set to be its old weight
d:,; multiplied by %, where ¢€; is the sum of the weights of the examples that

h; misclassifies. AdaBoost assumes that L; is a weak learner, i.e., ¢ < % with
high probability. Under this assumption, i > 1, so the ith example’s weight
increases (di41,; > dt,;). On the other hand, if ht correctly classifies the ith ex-
ample, then d;; ; is set to d;; multiplied by 2(1 7y’ which is less than one by
the weak learning assumption; therefore, example i’s weight is decreased. Note
that d¢4; is already normalized:

Zdtﬂ,i:—de (he(zi) # yi) + de (he(zi) =)
i=1

Lo, 1
= —€+
2¢, | 2(1—¢)

(]. - Gt) =1.

Under distribution d¢41, the total weight of the examples misclassified by hy
and those correctly classified by h; become 0.5 each. This is done so that, by
the weak learning assumption, hyy; will classify at least some of the previously
misclassified examples correctly. As shown in [1], this weight update scheme is
equivalent to the usual scheme [5] but is intuitively more clear. The loop con-
tinues, creating the T base models in the ensemble. The final ensemble returns,
for a new example, the one class in the set of classes Y that gets the highest
weighted vote from the base models.

Construct a vector u; € [—1,1]™ such that the ith element wu; ; = 1 if h; clas-
sifies the ith training example correctly (h¢(x;) = y;) and u; = —1 otherwise.
Kivinen and Warmuth [7] pointed out that AdaBoost finds d¢41 by minimizing
A(d¢y1,ds) subject to dey1 - up = 0, where A(a,b) is a distance measure such
as relative entropy. That is, the new distribution is created to be orthogonal to
the mistake vector of hy, which can be intuitively described as wanting the new
base model’s mistakes to be uncorrelated with those of the previous model. This
naturally leads to the question of whether one can improve upon AdaBoost by
constructing d¢+1 to be orthogonal to the mistake vectors of all the previous
base models hy, ha, ..., (i-e., dipq -u, =0 for all g € {1,2,...,¢}). However,
there is no guarantee that a probability distribution d;y; exists that satisfies
all the constraints. Even if a solution exists, finding it appears to be a very
difficult optimization problem [7]. The Totally Corrective Algorithm (figure 2)
attempts to solve this problem using an iterative method. The initial parts of
the algorithm are similar to AdaBoost: it uses the same d; as AdaBoost in cre-
ating the first base model and the next statement checks that the base model
error is less than 0.5. The difference is in the method of calculating the weight
distribution for the next base model. The TCA starts with some initial distri-
bution such as dy. It then repeatedly finds the ¢; € {1,2,...,t} yielding the
highest |&j “Ug;|, and then projects the current distribution onto the hyperplane

defined by Elj - ug; = 0. This is similar to so-called row action optimization

AveBoost({(xl, yl):) (.’Em, ym)}a Lb7 T)
Initialize d1,; = 1/m for all ¢ € {1,2,...,m}.
Fort=1,2,...,T:

he = Lb({(wla yl)a) (.’Em, ym)}, df)'
Calculate the error of h; : €; = Zi:hi(wi)?&’yi
If e, > 1/2 then,
set T =t — 1 and abort this loop.
Calculate orthogonal distribution:
For¢t=1,2,...,m:

dui.

if he(xs) = ys

1
R) 2(1—€¢)
Ct,i = dt, X .
¢ ¢ 1 otherwise

pre
tds,; + ci,i
t+1

dit1, =

Output the final hypothesis:
hfin(z) = argmax, ¢y Et:ht (2)=y logl;“ .

Fig. 3. AveBoost algorithm: {(z1,41),...,(Zm,¥ym)} is the training set, Ly is the base
model learning algorithm, and T is the maximum allowed number of base models.

methods [3]. Kivinen and Warmuth show that, if there is a distribution that

satisfies all the constraints, then at most 21;‘2’” iterations are needed so that

maxy, c(1,2,....t} |E1j - ug;| < for any v > 0. Of course, as mentioned earlier, we
cannot generally assume that there is a distribution that satisfies all the con-
straints, in which case the bound is invalid. In fact, we are not even guaranteed
to reduce maxg, e{1,2,...1} |&J- - qu| at each iteration. To make the TCA usable
for our experiments, we have added two stopping criteria not present in the
original algorithm. Define v; ; = maxy e{12,....0} |&J - Ug;|. The algorithm stops
if either |vy; — vy j—1| < 0.0001 or both j > m and v;; > v ;1. The first
constraint requires that the maximum dot product change by some minimum
amount between consecutive iterations. The second constraint requires that, af-
ter iterating at least as many times as the number of training examples, the
maximum dot product not increase. These are heuristic criteria devised based
on our experiments with this algorithm.

3 AveBoost algorithm

Figure 3 shows our new algorithm, AveBoost. Just as in AdaBoost, AveBoost
initializes di; = 1/m for all i € {1,2,...,m}. Then it goes inside the loop,
where it calls the base model learning algorithm L; with the training set and
distribution d; and calculates the error of the resulting base model h;. It then

calculates ¢;, which is the distribution that AdaBoost would use to construct
the next base model. However, AveBoost averages this with d; to get d2, and
uses this dy instead. Note that the ¢;’s for all ¢ € {1,2,...,T'} do not need to be
normalized because they are calculated the same way as the d;’s in AdaBoost,
which we showed to be distributions in Section 2. Showing that the d;’s in
AveBoost are distributions is a trivial proof by induction. For the base case, d;
is constructed to be a distribution. For the inductive part, if d; is a distribution,
then d;y; is a distribution because it is a convex combination of d; and c;.

Returning to the algorithm, the loop continues for a total of T iterations.
Then the base models are combined using the same weighted averaging used in
AdaBoost. The vector d;y; is a running average of d; and the vectors cq for
g € {1,2,...,t}, which are orthogonal to the mistake vectors of the previous ¢
base models (uq for g € {1,2,...,t}), respectively. For ease of exposition, define
co £ d; and ug to be any vector in [—1,1]™ such that its elements sum to zero.
Then we have dyy1 = t-‘,—% EZ:O cq. This d¢41 has the least average Euclidian
distance to the vectors ¢, for ¢ € {0,1,...,t}. That is, d;41 is the solution d that
minimizes the least-squares error Zf;:o > (cq,i —d;)?. In this sense, AveBoost
finds a solution that does the best job of balancing among the ¢ constraints
Cq - Uq = 0 with much less computational cost than an optimization method
such as that used in the TCA.

AveBoost can be seen as a relaxed version of AdaBoost. When training ex-
amples are noisy and therefore difficult to fit, AdaBoost is known to increase
the weights on those examples to excess and overfit them [4] because many con-
secutive base models may not learn them properly. AveBoost tends to mitigate
this overfitting by virtue of its averaging process. For this reason, we expect the
range of training example weights to be narrower for AveBoost than AdaBoost.
AveBoost’s averaging process limits the range of training set distributions that
are explored, which we expect will increase the average correlations among the
base models. However, we expect their average accuracies to go up. We also hy-
pothesize that AveBoost will tend to show greater advantage over AdaBoost for
small numbers of base models. When AveBoost creates a large ensemble, the last
few training set distributions cannot be too different from each other because
they are prepared by averaging over many previous distributions.

4 Experimental Results

In this section, we compare AdaBoost, the TCA, and AveBoost on the nine UCI
datasets [2] described in Table 1. We ran all three algorithms with three different
values of T', which is the maximum number of base models that the algorithm is
allowed to construct: 10, 50, and 100. Each result reported is the average over 50
results obtained by performing 10 runs of 5-fold cross-validation. Table 1 shows
the sizes of the training and test sets for the cross-validation runs.

Table 2 shows how often AveBoost significantly outperformed, performed
comparably with, and significantly underperformed AdaBoost and the TCA.

Table 1. The datasets used in the experiments

Data Set |Training| Test |Inputs|Classes
Set Set
Promoters 84 22 57 2
Balance 500 125 4 3
Breast Cancer 559 140 9 2
German Credit| 800 200 20 2
Car Evaluation| 1382 346 6 4
Chess 2556 | 640 | 36 2
Mushroom 6499 |1625| 22 2
Nursery 10368 | 2592 8 5
Connect4 54045 |(13512| 42 3
Table 2. Performance of AveBoost
| Compared to | Base Model || 10 | 50 | 100 |
AdaBoost Naive Bayes ||+6=1-2|4+4=3-2|+4=2-3

Totally Corrective| Naive Bayes |+6=2-1|+6=2-1|+6=2-1
AdaBoost Decision Trees |+2=7-0|+2=5-2(+2=>5-2
AdaBoost Decision Stumps||+2=6-1|+2=4-3|4+2=3-4

For example, with 10 Naive Bayes base models, AveBoost significantly outper-
formed* AdaBoost on six of the datasets, performed comparably on one dataset,
and performed significantly worse on two, which is written as “4+6=1-2.” Fig-
ure 4 compares the error rates of AdaBoost and AveBoost with Naive Bayes base
models. In all the plots presented in this paper, each point marks the error rates
of two algorithms when run with the number of base models indicated in the
legend and a particular dataset. The diagonal line in the plots contain points
at which the two algorithms have equal error. Therefore, points below/above
the line correspond to the error of the algorithm indicated on the y-axis be-
ing less than/greater than the error of the algorithm indicated on the x-axis,
respectively. The scales for each plot were adapted for the error rates shown;
therefore, they are different across the plots. We can see that, for Naive Bayes
base models, AveBoost performs much better than AdaBoost overall. Figure 5
shows that AveBoost performs substantially better than the TCA. We examined
the runs of the TCA in more detail and often found the overfitting that Kivinen
and Warmuth thought would happen. Due to this poor performance, we did not
continue experimenting with the TCA for the rest of this paper.

We compare AdaBoost and AveBoost using decision tree and decision stump
base models in figures 6 and 7, respectively. With decision trees, AveBoost per-

4 We use a t-test with o = 0.05 to compare all the classifiers in this paper.

30 : : : 40 . : : :
" 10 models x " 10 models x
S o5 || 50models = ¥ a © 35| 50models = 1
8 100 models = 8 30| 100 models = |
)])]
2 20 Z 5L &y i
z . z
£ 157 oo £ 20r 1
2 d 2 L <
@ 10 ai 7 15 a . g
<] <] X
o o 10 - ax 4
ni] o] |
¢ 5r 5 g 5 s 1
< < &
O 1 1 1 1 1 O 1 1 J 1 1 1 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40
AdaBoost with Naive Bayes Totally Corrective AdaBoost with Naive Bayes

Fig. 4. Test set error rates of AdaBoost vs. Fig.5. Test set error rates of Totally

AveBoost (Naive Bayes) Corrective Boosting vs. AveBoost (Naive
Bayes)
30 T T T o 50 T T T T T

? 10 models ~ x E g 45| LOmodels |
£ o5 1| 50models o 48 5 50 models ®© ®

= 100 models _ » . & 40 [|_100 models » 1
c

° L x S 35+ « 1
@ 20 S x

3 230+ . . |
a) o o

2 15t A 25t s]
2) £ 2 x o 1
g 10 + 2 ; 15 | f 4
A 5| } é 10 t]
3] w 5 4
$ - :

0 L L L L L < 0 L L L L L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 40 45 50
AdaBoost with Decision Trees AdaBoost with Decision Stumps

Fig. 6. Test set error rates of AdaBoost vs. Fig. 7. Test set error rates of AdaBoost vs.
AveBoost (Decision Trees) AveBoost (Decision Stumps)

forms somewhat better than AdaBoost. With decision stumps, the differences in
error rates vary much more, with AveBoost sometimes performing worse than
AdaBoost.

We now analyze the performances of AdaBoost and AveBoost in more depth.
Due to space limitations, we discuss our results with only Naive Bayes base mod-
els and for only two datasets: Promoters and Breast Cancer. We chose these two
because the performances of AveBoost relative to AdaBoost are very different
for these two datasets. On Promoters, AveBoost significantly outperformed Ad-
aBoost, while on Breast Cancer, they performed comparably for 10 and 100 base
models and AveBoost performed worse for 50 base models. Table 3 gives the re-
sults of our comparison. The top half of the table gives the Promoters dataset
results while the bottom half gives the Breast Cancer results. For each dataset,
the first row states the maximum allowed number of base models (this is 7" in
Figures 1-3). The second row gives the average number of base models actually
constructed over the 50 runs (recall that each algorithm has a stopping crite-

Table 3. Detailed comparison of AveBoost and AdaBoost on Promoters and Breast
Cancer

PROMOTERS AdaBoost NB AveBoost NB
Max. Base Models 10 50 100 10 50 100
Avg. Base Models 10 50 100 9.9 43.32 | 72.22

Ens. Train Perf. 0.9993 1.0 1.0 0.9998 1.0 1.0
Ens. Test Perf. 0.7736 | 0.8109 | 0.8455 | 0.8418 | 0.8600 | 0.8618
Avg. Corr. Train || 0.3319 | 0.2901 | 0.2813 | 0.6229 | 0.5511 | 0.4277
Avg. Corr. Test 0.1877 | 0.1422 | 0.1395 | 0.4541 | 0.5159 | 0.5245
Base Train Perf. 0.7878 | 0.7597 | 0.7555 | 0.8917 | 0.9052 | 0.9085
Base Test Perf. 0.6514 | 0.6204 | 0.6210 | 0.7490 | 0.7613 | 0.7640
Min. Example Wt. ||5.85e-05|3.40e-08|7.67e-10| 0.0046 | 0.0024 | 0.0019
Max. Example Wt. || 0.1748 | 0.2528 | 0.2821 | 0.0644 | 0.0670 | 0.0671
Sdev. Example Wt. || 0.0177 | 0.0212 | 0.0217 | 0.0089 | 0.0098 | 0.0100

BREAST CANCER AdaBoost NB AveBoost NB
Max. Base Models 10 50 100 10 50 100
Avg. Base Models 10 50 99.52 10 48.46 | 93.48

Ens. Train Perf. 0.9973 | 0.9998 1.0 0.9892 | 0.9985 | 0.9991
Ens. Test Perf. 0.9509 | 0.9506 | 0.9445 | 0.9509 | 0.9483 | 0.9470
Avg. Corr. Train || 0.6409 | 0.4955 | 0.4638 | 0.9146 | 0.8688 | 0.7864
Avg. Corr. Test 0.6338 | 0.4960 | 0.4650 | 0.9210 | 0.9033 | 0.8958
Base Train Perf. 0.8918 | 0.8465 | 0.8340 | 0.9723 | 0.9727 | 0.9715
Base Test Perf. 0.8639 | 0.8209 | 0.8091 | 0.9429 | 0.9351 | 0.9324
Min. Example Wt. ||7.06e-06|8.66e-15|4.96e-24|6.62e-04|3.25¢-04|2.40e-04
Max. Example wt. || 0.0934 | 0.1413 | 0.1643 | 0.0360 | 0.0434 | 0.0446
Sdev. Example Wt. || 0.0073 | 0.0087 | 0.091 | 0.0039 | 0.0053 | 0.0056

rion that can result in fewer base models than what the user selects). AveBoost
uses much fewer base models than AdaBoost on the Promoters dataset, but we
found no correlation between number of base models and performance. The next
two rows state the average ensemble performances on the training and test sets.
Next are the average correlations of the outputs of all pairs of base models on
the training and test sets. As expected, the correlations are higher for AveBoost
than AdaBoost. However, the average training and test accuracies of the base
models are also higher, as shown by the next two rows for each dataset. We then
calculated, for each training example, the minimum and maximum weights ever
assigned to it, and the standard deviation of all the weights assigned to it. The
next three rows give the average, over all the training examples, of these minima,
maxima, and standard deviations. As anticipated, the ranges of the weights for
AveBoost are much lower than for AdaBoost.

5 Conclusions

We presented AveBoost, a boosting algorithm that trains each base model using
a training example weight vector that is based on the performances of all the

previous base models rather than just the previous one. We discussed the theo-
retical motivation for this algorithm and demonstrated empirical results that are
superior overall to AdaBoost and the TCA that has the same goal as AveBoost.

We are currently analyzing AveBoost theoretically. The algorithmic stability-
based framework [9] intuitively seems the most promising because of AveBoost’s
averaging process. We plan to empirically analyze the algorithms presented here
for all the datasets in the style of Table 3 for a longer version of this paper. We
also plan to devise synthetic datasets with various levels of noise to observe if
AveBoost is more robust to noise than AdaBoost as we have hypothesized. Ad-
ditionally, it has been pointed out [8, 10] that ensembles work best when they are
somewhat anti-correlated. We attempted to exploit this by implementing several
boosting algorithms that, at each iteration, change the base model weights so
that the correctly classified examples’ weights add up to slightly less than 0.5.
This scheme occasionally performed better and occasionally performed worse
than AdaBoost. Depending on the available running time, it may be possible to
create classifiers using several of these weight adjustment schemes and use the
ones that look most promising for the dataset under consideration.

References

1. Eric Bauer and Ron Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-139, Sep.
1999.

2. C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases,
1999. (URL: http://www.ics.uci.edu/~mlearn/MLRepository.html).

3. Y. Censor and A. Lent. An iterative row-action method for interval convex pro-
gramming. Journal of Optimization Theory and Applications, 34(3):321-353, 1981.

4. Thomas G. Dietterich. An experimental comparison of three methods for construct-
ing ensembles of decision trees: Bagging, boosting, and randomization. Machine
Learning, 40:139-158, Aug. 2000.

5. Y. Freund and R. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the Thirteenth International Conference on Machine Learning, pages
148-156, Bari, Italy, 1996. Morgan Kaufmann.

6. Michael J. Kearns and Umesh V. Vazirani. Introduction to Computational Learning
Theory. MIT Press, Cambridge, MA, 1994.

7. Jyrki Kivinen and Manfred K. Warmuth. Boosting as entropy projection. In
Proceedings of the Twelfth Annual Conference on Computational Learning Theory,
pages 134-144, 1999.

8. A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active
learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors, Advances in
Neural Information Processing Systems-7, pages 231-238. M.I.T. Press, 1995.

9. Samuel Kutin and Partha Niyogi. The interaction of stability and weakness in
adaboost. Technical Report TR-2001-30, University of Chicago, October 2001.
10. Nikunj C. Oza. Online Ensemble Learning. PhD thesis, The University of Califor-

nia, Berkeley, CA, Dec 2001.
11. K. Tumer and J. Ghosh. Analysis of decision boundaries in linearly combined
neural classifiers. Pattern Recognition, 29(2):341-348, February 1996.

